Signalling cell cycle arrest and cell death through the MMR System.
نویسندگان
چکیده
Loss of DNA mismatch repair (MMR) in mammalian cells, as well as having a causative role in cancer, has been linked to resistance to certain DNA damaging agents including clinically important cytotoxic chemotherapeutics. MMR-deficient cells exhibit defects in G2/M cell cycle arrest and cell killing when treated with these agents. MMR-dependent cell cycle arrest occurs, at least for low doses of alkylating agents, only after the second S-phase following DNA alkylation, suggesting that two rounds of DNA replication are required to generate a checkpoint signal. These results point to an indirect role for MMR proteins in damage signalling where aberrant processing of mismatches leads to the generation of DNA structures (single-strand gaps and/or double-strand breaks) that provoke checkpoint activation and cell killing. Significantly, recent studies have revealed that the role of MMR proteins in mismatch repair can be uncoupled from the MMR-dependent damage responses. Thus, there is a threshold of expression of MSH2 or MLH1 required for proper checkpoint and cell-death signalling, even though sub-threshold levels are sufficient for fully functional MMR repair activity. Segregation is also revealed through the identification of mutations in MLH1 or MSH2 that provide alleles functional in MMR but not in DNA damage responses and mutations in MSH6 that compromise MMR but not in apoptotic responses to DNA damaging agents. These studies suggest a direct role for MMR proteins in recognizing and signalling DNA damage responses that is independent of the MMR catalytic repair process. How MMR-dependent G2 arrest may link to cell death remains elusive and we speculate that it is perhaps the resolution of the MMR-dependent G2 cell cycle arrest following DNA damage that is important in terms of cell survival.
منابع مشابه
G1 Phase Arrest and Apoptosis Induction in Human Thyroid Cancer Cell Line Thr.C1.PI33 by 3-Hydrogenkwadaphnin Isolated from Dendrostellera lessertii
Dendrostellera lessertii (Thymelaeaceae) is a toxic plant that grows in parts of Iran. The anti-proliferative properties of its crude methanol extract and one of its active components, 3-hydrogenkwadaphnin (3-HK), have been established using several cancer cell lines. Methods: In a further attempt to determine the mode of action, two groups of synchronously growing cells were treated with a sin...
متن کاملThe cucurbitacins D, E, and I from Ecballium elaterium (L.) upregulate the LC3 gene and induce cell-cycle arrest in human gastric cancer cell line AGS
Objective(s): Cucurbitacins exhibit a range of anti-cancer functions. We investigated the effects of cucurbitacins D, E, and I purified from Ecballium elaterium (L.) A. Rich fruits on some apoptotic and autophagy genes in human gastric cancer cell line AGS. Materials and Methods: Using quantitative reverse transcription PCR (qRT-PCR), the expression of LC3, VEGF, BAX, caspase-3, and c-MYC genes...
متن کاملCompetency in mismatch repair prohibits clonal expansion of cancer cells treated with N-methyl-N'-nitro-N-nitrosoguanidine.
The phenomenon of alkylation tolerance has been observed in cells that are deficient in some component of the DNA mismatch repair (MMR) system. An alkylation-induced cell cycle arrest had been reported previously in one MMR-proficient cell line, whereas a MMR-defective clone derived from this line escapes from this arrest. We examined human cancer cell lines to determine if the cell cycle arres...
متن کاملبررسی اثرپکتین تغییر یافته مرکبات (MCP) و دوکسوروبیسین برقدرت زیستایی، مورفولوژی و چرخه سلولی دردو دودمان سلولی سرطان پروستات انسانی، DU-145 وLNCaP
Background and Objective: This study was conducted to evaluate the effect of PectaSol on modification of Doxorubicin (Dox) cytotoxicity and apoptosis and cell cycle in prostate cancer cell lines (DU-145 & LNCaP) Materials and Methods: Human prostate carcinoma DU-145 and LNCaP cell lines were treated with various concentrations of pectaSol,...
متن کاملChenopodium Botrys as a Source of Sesquiterpenes to Induce Apoptosis and G1 Cell Cycle Arrest in Cervical Cancer Cells
Conducting cell apoptosis pathways is a novel strategy in cancer treatment. This study aimed to explain that C. botrys essential oil could induce apoptosis and arrest the cell cycle in HeLa cells. Cytotoxic and apoptogenic effects of the essential oil of Jerusalem-oak (Chenopodium botrys L.), which was obtained from the aerial parts of the plant, were evaluated in HeLa cells. Cell viability was...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Carcinogenesis
دوره 27 4 شماره
صفحات -
تاریخ انتشار 2006